Caveolin-1 modulates cardiac gap junction homeostasis and arrhythmogenecity by regulating cSrc tyrosine kinase

KC Yang, CA Rutledge, M Mao… - Circulation …, 2014 - Am Heart Assoc
KC Yang, CA Rutledge, M Mao, FR Bakhshi, A Xie, H Liu, MG Bonini, HH Patel, RD Minshall
Circulation: Arrhythmia and Electrophysiology, 2014Am Heart Assoc
Background—Genome-wide association studies have revealed significant association of
caveolin-1 (Cav1) gene variants with increased risk of cardiac arrhythmias. Nevertheless,
the mechanism for this linkage is unclear. Methods and Results—Using adult Cav1-/-mice,
we revealed a marked reduction in the left ventricular conduction velocity in the absence of
myocardial Cav1, which is accompanied with increased inducibility of ventricular
arrhythmias. Further studies demonstrated that loss of Cav1 leads to the activation of cSrc …
Background
Genome-wide association studies have revealed significant association of caveolin-1 (Cav1) gene variants with increased risk of cardiac arrhythmias. Nevertheless, the mechanism for this linkage is unclear.
Methods and Results
Using adult Cav1-/- mice, we revealed a marked reduction in the left ventricular conduction velocity in the absence of myocardial Cav1, which is accompanied with increased inducibility of ventricular arrhythmias. Further studies demonstrated that loss of Cav1 leads to the activation of cSrc tyrosine kinase, resulting in the downregulation of connexin 43 and subsequent electric abnormalities. Pharmacological inhibition of cSrc mitigates connexin 43 downregulation, slowed conduction, and arrhythmia inducibility in Cav1-/- animals. Using a transgenic mouse model with cardiac-specific overexpression of angiotensin-converting enzyme (ACE8/8), we demonstrated that, on enhanced cardiac renin–angiotensin system activity, Cav1 dissociated from cSrc because of increased Cav1 S-nitrosation at Cys156, leading to cSrc activation, connexin 43 reduction, impaired gap junction function, and subsequent increase in the propensity for ventricular arrhythmias and sudden cardiac death. Renin–angiotensin system–induced Cav1 S-nitrosation was associated with increased Cav1–endothelial nitric oxide synthase binding in response to increased mitochondrial reactive oxidative species generation.
Conclusions
The present studies reveal the critical role of Cav1 in modulating cSrc activation, gap junction remodeling, and ventricular arrhythmias. These data provide a mechanistic explanation for the observed genetic link between Cav1 and cardiac arrhythmias in humans and suggest that targeted regulation of Cav1 may reduce arrhythmic risk in cardiac diseases associated with renin–angiotensin system activation.
Am Heart Assoc